Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biomed Mater Res A ; 112(2): 180-192, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37694883

RESUMO

Accumulating evidence supports the role of cartilage tissue engineering in cartilage defect repair, but the biological function has yet to be fully explained. In this work, kartogenin (KGN), an emerging chondroinductive nonprotein small molecule, was incorporated into a composite hydrogel of polyvinyl alcohol/nano-hydroxyapatite (PVA/n-HA) to fabricate an appropriate microenvironment for tendon-bone healing after anterior cruciate ligament (ACL) reconstruction. KGN/PVA/n-HA composite hydrogel scaffolds were prepared by in situ synthesis and physical adsorption, followed by characterization under a scanning electron microscope. The scaffolds were transplanted into healthy New Zealand White (NZW) rabbits. It was confirmed that KGN/PVA/n-HA scaffolds were successfully prepared and exhibited good supporting properties and excellent biocompatibility. Unilateral ACL reconstruction was constructed with tendon autograft in NZW rabbits, and the morphology and diameter of collagen fiber were analyzed. The scaffolds were shown to promote ACL growth and collagen fiber formation. Furthermore, microcomputerized tomography analysis and bone formation histology were performed to detect new bone formation. KGN/PVA/n-HA scaffolds effectively alleviated cartilage damage and prevented the occurrence of osteoarthritis. Meanwhile, ligament-bone healing and bone formation were observed in the presence of KGN/PVA/n-HA scaffolds. In conclusion, these results suggest that the KGN/PVA/n-HA scaffolds can facilitate tendon-bone healing after ACL reconstruction and might be considered novel hydrogel biomaterials in cartilage tissue engineering.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Durapatita , Coelhos , Animais , Durapatita/farmacologia , Álcool de Polivinil/farmacologia , Colágeno , Reconstrução do Ligamento Cruzado Anterior/métodos , Tendões/cirurgia , Hidrogéis/farmacologia
2.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764249

RESUMO

Residual quinolones in food that exceed their maximum residue limit (MRL) are harmful to human health. However, the existing methods used for testing these residues have limitations; so, we developed a new limit test method called TLC-SERS to rapidly determine the levels of residues of the following: enrofloxacin (A), ciprofloxacin (B), ofloxacin (C), fleroxacin (D), sparfloxacin (E), enoxacin (F), gatifloxacin (G), and nadifloxacin (H). The residues ware preliminarily separated via TLC. The tested compounds' position on a thin-layer plate were labeled using their relative Rf under 254 nm ultraviolet light, and an appropriate amount of nanometer silver solution was added to the position. The silver on the plate was irradiated with a 532 nm laser to obtain the SERSs of the compounds. The results show significant differences in the SERS of the eight quinolones: the LODs of H, A, D, E, C, G, F, and B were 9.0, 12.6, 8.9, 19.0, 8.0, 8.7, 19.0, and 12.6 ng/mL, respectively; and the RSD was ≤4.9% for the SERS of each quinolone. The limit test results of 20 samples are consistent with those obtained via UPLC-MS/MS. The results indicate that TLC-SERS is a specific, sensitive, stable, and accurate method, providing a new reference for the rapid limit test of harmful residues in foods.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122513, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36812752

RESUMO

Thrombin (TB) plays a key role in the pathological and physiological coagulation of diseases. In this work, a TB-activated fluorescence-surface-enhanced Raman spectroscopy (SERS) dual-mode optical nanoprobe (MRAu) was constructed by linking rhodamine B (RB)-modified magnetic fluorescent nanospheres with AuNPs through TB-specific recognition peptides. In the presence of TB, the polypeptide substrate could specifically be cleaved by TB, resulting in the weakening of SERS hotspot effect and the reduction of Raman signal. Meanwhile, the fluorescence resonance energy transfer (FRET) system was destroyed, and the RB fluorescence signal originally quenched by AuNPs was recovered. Using MRAu, SERS and fluorescence methods were combined to extend the TB detection range to 1-150 pM, and the detection limit was as low as 0.35 pM. In addition, the ability to detect TB in human serum also verified the effectiveness and practicality of the nanoprobe. The probe was also successfully employed to evaluate the inhibitory effect against TB of active components in Panax notoginseng. This study provides a new technical means for the diagnosis and drug development of abnormal TB-related diseases.


Assuntos
Nanopartículas Metálicas , Trombina , Humanos , Nanopartículas Metálicas/química , Ouro/química , Análise Espectral Raman/métodos , Espectrometria de Fluorescência
4.
ACS Appl Mater Interfaces ; 14(1): 1921-1928, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958540

RESUMO

Hydrogel strain sensors have attracted tremendous attention in medical monitoring, flexible wearable devices, and human-machine interfaces. However, traditional hydrogels exhibit isotropic sensing performance based on their isotropic structure. Therefore, it is challenging to fabricate a hydrogel with an anisotropic structure similar to human tissues for achieving anisotropic sensing characteristics. Herein, we proposed a simple and effective method for preparing anisotropic poly(vinyl alcohol) (PVA) conductive hydrogels, which demonstrated anisotropic mechanical properties and anisotropic ion conductivity. The anisotropic hydrogel was successfully constructed through first thermal stretching and then directional freezing. The mechanical strength of hydrogels along the parallel stretching direction (stress of 1596 kPa and toughness of 3.69 MJ/m3) was higher than that of the hydrogels along the vertical stretching direction (stress of 883.1 kPa and toughness of 1.96 MJ/m3). Moreover, the hydrogel showed anisotropic conductivity on the advantage of the different ion channels. The prepared hydrogel sensor exhibited anisotropic sensing for multidirectional stress in the strain range from 0.5 to 100%. The gauge factors (GF) parallel to the stretching direction were greater than the GF vertical to the stretching direction. The anisotropic hydrogel sensors are expected to have broad application prospects in flexible wearable devices and medical monitoring.

5.
RSC Adv ; 11(60): 38016-38025, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498087

RESUMO

A polyoxometalate acid can be encapsulated into a metal-organic framework to construct a novel kind of solid-acid catalyst. In this work, the two-step method -high-temperature preparation of Zr6O4(OH)4(CH3COO)12 and low-temperature self-assembly-has been adopted to synthesize the PW12@UIO-66 composite (PW12 = H3PW12O40; UIO-66 = Zr6O4(OH)4(OOC-C6H4-COO)12). The as-synthesized PW12@UIO-66 composite exhibits highly crystalline, good octahedron morphology, large specific surface area (1960 m2 g-1) and high thermal stability (>500 °C), which clearly demonstrates the potential as a solid-acid catalyst. Additionally, the PW12@UIO-66 composite may be accomplished with 85% utilization of H3PW12O40 and 95% yield through this synthetic procedure. The performances of the PW12@UIO-66 composite are investigated by catalyzing the simultaneous transesterification and esterification of soybean oil into biodiesel. Under the optimal conditions, the conversion of the soybean oil into biodiesel would exceed 90% over the as-synthesized PW12@UIO-66 composite. As the crucial indexes for industrial prospects, the recycling and life experiments were surveyed. After 10 times recycling and 4 weeks, the structure and performance of the PW12@UIO-66 composite remained unchanged and in the meantime the PW12@UIO-66 composite still maintained a high activity to convert soybean oil into biodiesel.

6.
ACS Omega ; 5(38): 24262-24271, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33015443

RESUMO

Volatile radionuclides generated during the nuclear fission process, such as iodine, pose risks to public safety and cause the threat of environmental pollution. Covalent organic framework (COF) materials have a controlled pore structure and a large specific surface area and thus demonstrate great opportunities in the field of radioactive iodine adsorption. However, the harsh synthetic conditions and the weak binding capability toward iodine have significantly restricted the applications of COFs in iodine adsorption. Here, we demonstrate a facile way to prepare a series of stable C-N-linked COFs with high efficiency to capture radioactive iodine species. Large-scale synthesis can be conducted by the aldol condensation reaction at room temperature. The resulting COFs have a large surface area and a strong resistance to acid, base, and water. Moreover, all types of COFs show high iodine adsorption, up to 2.6 g/g (260% in mass), owing to the large surface area and the functional groups in COFs. They not only absorb conventional I2 molecular but also ionic state (I3 - and I+) iodine species. Theoretical calculations are further performed to understand the relationship between different iodine species and the functional groups of all COFs, offering the mechanisms underlying the potent adsorption abilities of COFs.

7.
PLoS One ; 15(5): e0232695, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379794

RESUMO

BACKGROUND: The proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (HBMScs) are modulated by a variety of microRNAs (miRNAs). SATB homeobox 2 (SATB2) is a critical transcription factor that contributes to maintain the balance of bone metabolism. However, it remains unclear how the regulatory relationship between miR-103 and SATB2 on HBMScs proliferation and osteogenic differentiation. METHODS: HBMScs were obtained from Cyagen Biosciences and successful induced osteogenic differentiation. The proliferation abilities of HBMScs after treatment with agomiR-103 and antagomiR-103 were assessed using a cell counting Kit-8 (CCK-8) assay, and osteogenic differentiation was determined using alizarin red S staining and alkaline phosphatase (ALP) activity assay. The expression levels of miR-103, SATB2, and associated osteogenic differentiation biomarkers, including RUNX family transcription factor 2 (RUNX2), bone gamma-carboxyglutamate protein (BGLAP), and secreted phosphoprotein 1 (SPP1), were evaluated using real-time qPCR and Western blot. The regulatory sites of miR-103 on SATB2 were predicted using bioinformatics software and validated using a dual luciferase reporter assay. The underlying mechanism of miR-103 on SATB2-medicated HBMScs proliferation and osteogenic differentiation were confirmed by co-transfection of antagomiR-103 and SATB2 siRNA. RESULTS: The expression of miR-103 in HBMScs after induction of osteogenic differentiation was reduced in a time-dependent way. Overexpression of miR-103 by transfection of agomiR-103 suppressed HBMScs proliferation and osteogenic differentiation, while silencing of miR-103 by antagomiR-103 abolished these inhibitory effects. Consistently, RUNX2, BGLAP and SPP1 mRNA and protein expression were decreased in agomiR-103 treated HBMScs compared with those in agomiR-NC group. Meanwhile, antagomiR-103 upregulated the mRNA and protein expression levels of RUNX2, BGLAP and SPP1 in HBMScs. Further studies revealed that SATB2 was a direct target gene of miR-103. BMSCs transfected with agomiR-103 exhibited significantly downregulated protein expression level of SATB2, whereas knockdown of miR-103 promoted it. Additionally, rescue assays confirmed that silencing of SATB2 partially reversed the effects of antagomiR-103 induced HBMScs proliferation and osteogenic differentiation. CONCLUSIONS: The present results suggested that miR-103 negatively regulates SATB2 to serve an inhibitory role in the proliferation and osteogenic differentiation of HBMScs, which sheds light upon a potential therapeutic target for treating bone-related diseases.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , MicroRNAs/fisiologia , Osteogênese/fisiologia , Fatores de Transcrição/metabolismo , Células da Medula Óssea , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais
8.
Angew Chem Int Ed Engl ; 59(10): 3900-3904, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31869508

RESUMO

A deconstructive oxygenation of unstrained primary cycloalkanamines has been developed for the first time using an auto-oxidative aromatization promoted C(sp3 )-C(sp3 ) bond cleavage strategy. This metal-free method involves the substitution reaction of cycloalkanamines with hydrazonyl chlorides and subsequent auto-oxidative annulation to in situ generate pre-aromatics, followed by N-radical-promoted ring-opening and further oxygenation by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and m-cholorperoxybenzoic acid (mCPBA). Consequently, a series of 1,2,4-triazole-containing acyclic carbonyl compounds were efficiently produced. This protocol features a one-pot operation, mild reaction conditions, high regioselectivity and ring-opening efficiency, broad substrate scope, and is compatible with alkaloids, osamines, and peptides, as well as steroids.

9.
Soft Matter ; 15(19): 3897-3905, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30993273

RESUMO

Currently, robust and functional hydrogels have attracted extensive attention due to their potential applications in wastewater treatment, farmland water conservation and other fields. Herein, a series of hydrophobic association hydrogels assisted by titanium dioxide (TiO2) was fabricated via one-pot in situ photo-induced polymerization. TiO2 nanoparticles could act as both photo-initiators and physical crosslinking points. The TiO2-assisted hydrophobic association hydrogels exhibited a high tensile strength of 306 kPa, superior compression strength of 2.17 MPa and excellent fatigue resistance. Simultaneously, the incorporation of TiO2 endowed the hydrogel with photocatalytic capacity for dye wastewater treatment based on the inherent nature of TiO2. The results indicated that the hydrogels contributed to the degradation of various ionic dyes including methylene blue, rhodamine B and bromophenol blue, and the removal of methylene blue achieved a rate of 96.63%. Significantly, the hydrogel could be repeatedly utilized and the removal rate showed no evident decrease after five cycles, indicating that the hydrogels could be powerful candidates as photocatalysts for dye wastewater treatment.

10.
Org Lett ; 20(10): 2960-2963, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29701474

RESUMO

A convenient and efficient vicinal oxyalkynylation/aminoalkynylation of internal unactivated alkenes is achieved by means of a Cu-catalyzed radical cascade reaction of unsaturated ketoximes with ethynylbenziodoxolone (EBX) reagents. This protocol enables the synthesis of structurally valuable isoxazolines or cyclic nitrones and the introduction of an important alkyne group in a single operation. The reaction is characterized by a broad substrate scope for both unsaturated ketoximes and alkynylation reagents and a low catalyst loading.

11.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 7): m789-90, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21582717

RESUMO

In the title compound, {(C(4)H(16)N(3))[La(SO(4))(3)(H(2)O)]}(n), the La atom adopts an irregular LaO(9) coordination geometry, including one bonded water mol-ecule. The three sulfate groups adopt both monodentate and bidentate coordination to the metal ions. Two of the sulfate groups serve as bridges in the (100) and (010) directions, yielding infinite sheets, whereas the third is pendant to one La(3+) cation. The protonated organic species inter-acts with the layers by way of N-H⋯O hydrogen bonds, and O-H⋯O hydrogen bonds involving aqua ligands also occur.

12.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 7): m944, 2008 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-21202796

RESUMO

The title dysprosium coordination polymer, {[Dy(2)(C(10)H(8)O(6))(3)(H(2)O)(2)]·2H(2)O}(n), was synthesized by reacting dysprosium(III) nitrate and the flexible ligand (p-phenyl-enedi-oxy)diacetic acid under hydro-thermal conditions. Each Dy(III) ion is coordinated by nine O atoms in a tricapped trigonal prismatic geometry. The DyO(9) polyhedra form layers parallel to the bc plane. The rigid benzene rings of the anions link the layers along the a axis, forming a three-dimensional framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA